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 a b s t r a c t

Mobile applications compete for scarce user time-a mechanism I term “budget competition”-
regardless of functional similarity. Complementary apps are gross substitutes when budget com-
petition dominates functional competition. I estimate a discrete-continuous demand model to 
quantify the two types of competition using overlapping user data from China in 2017. Exploit-
ing app updates to identify complementarity, I find significant substitution between functionally 
independent apps, demonstrating that categories are often poor proxies for competition. While 
budget competition can be large in absolute terms, it is often small relative to functional compe-
tition. I discuss when budget competition may play a larger role.

1.  Introduction

In November 2025, the U.S. District Court rejected the Federal Trade Commission’s narrow “Personal Social Networking” market 
definition, ruling instead that Facebook and Instagram compete for user time in a broader market that includes TikTok and YouTube. 
For economists, this ruling underscores a critical methodological gap: tools for quantifying competition among apps are underdevel-
oped. Traditional SSNIP (small but significant and non-transitory increase in price) tests are inapplicable in zero-price environments, 
and qualitative reliance on functional categories proves inadequate. While the Apple App Store classifies TikTok as “Entertainment” 
and Facebook as “Social Networking,” the court found that users actively substitute between them, noting that such “artificial cate-
gories do not make sense.”1 This highlights an urgent need for new quantitative frameworks to analyze competition where prices are 
zero.

The binding time constraint complicates competition among apps even more. Users have at most 24 h per day. A minute spent 
on TikTok is a minute not spent on Facebook. In this paper, I refer to this as “budget competition” to distinguish it from “functional 
competition” captured by complementarity or substitutability. Similarly, expenditure on housing and food would crowd out discre-
tionary spending. Budget competition is salient in the mobile Internet industry because of the scarcity of time and its concentration 
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Fig. 1. Market Shares of Tech Giants in China. Note: Market shares are calculated based on time spent on apps developed by each tech giant in 
China. Data Source: Quest Mobile.

(see Fig. 1). Budget competition has been invoked in the landmark antitrust cases Qihu v. Tencent in 20132 and FTC v. Meta in 20253 
to expand the relevant market. Tencent contended that its instant-messaging software QQ competes with all other Internet companies 
for user attention.4 Meta argued that it competes with TikTok and YouTube for “users’ time and attention”.5 Both claims are trivially 
true, as all apps compete for time regardless of their functions. However, the key is the quantitative impact of budget competition. 
If time constraints outweigh functional interactions, complementary apps are gross substitutes. To accurately estimate competition 
among apps, we must consider both functional competition and budget competition, which necessitates a structural model of demand 
with a binding time constraint, in addition to allowing for complementarity/substitutability. In this paper, I develop such a model to 
estimate substitution between apps from observational data and decompose the substitution into functional competition and budget 
competition.

To distinguish between budget and functional competition, consider a thought experiment in which an app is shut down. There are 
two reasons the exit of an app could affect other apps. First, because of substitutability (complementarity), users find the remaining 
apps more (less) appealing. Hence users will spend more (less) time on the remaining apps. This is the functional competition effect. 
Second, the exit of an app means time that used to be spent on that app is now “free”, and users can allocate it to the remaining 
apps. This is the budget competition effect. I propose a model of time allocation to apps. The model features a quadratic utility 
function (Thomassen et al., 2017)6 to capture important features of apps: the discrete-continuous nature of app usage, zero prices, 
complementarity/substitutability, and a binding time constraint. I derive analytical conditions under which budget competition 
dominates functional competition and a pair of complementary apps become gross substitutes.

I estimate the model using a weekly panel of app usage of top apps in China, covering the first quarter of 2017. For each pair of 
apps, I observe not only their usage but also the number of overlapping users who use both apps in a week. I use updates of apps to 
identify complementarity/substitutability. Updates of an app should affect the utility of that app but not the utilities of other apps. 
However, updates of an app could change the usage of other apps through complementarity/substitutability. This model is estimated 
using a GMM strategy a la Berry et al. (1995). In all specifications, I include an outside option consisting of offline activities and a 
generic app that accounts for any other application usage. I apply this model to a pair of substitutes a priori (Baidu Map and Amap) 
and a pair of complements a priori (Baidu and Baidu Map) to validate the model. My model can correctly identify complements and 
substitutes. I apply the model to WeChat and iQIYI, the two apps that command the highest share of user time and budget competition 
are expected to be large between them. WeChat and Kwai are also analyzed because they are a pair of independent apps a priori and 
Kwai experienced spectacular growth after 2017.

2 For a brief introduction of this case, see https://www.pymnts.com/cpi_posts/qihoo-360-v-tencent-first-antitrust-decision-by-the-supreme-court/ 
and https://enipc.court.gov.cn/en-us/news/view-22.html.
3 See the relevant documents at https://www.courtlistener.com/docket/18735353/federal-trade-commission-v-meta-platforms-inc/
4 The Supreme People’s Court rejected this argument with qualitative analysis in the final adjudication in 2013.
5 The District Court accepted this definition based on observational and experimental evidence.
6 Lewbel and Nesheim (2019) also use a quadratic utility model.
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I find significant diversion between WeChat and Kwai (6% from WeChat to Kwai and 30% from Kwai to WeChat), two apps in 
different categories. This shows that categories can be a poor proxy for competition. Budget competition explains only a small fraction 
of the substitution patterns. For pairs with relatively low usage, like Baidu Map and Amap or Baidu and Baidu Map, the impact of 
budget competition is negligible, accounting for a time shift of less than 0.02 h per 1000 smartphone users. Budget competition 
effects are orders of magnitude larger (12 h when WeChat exits and 7 h when iQIYI exits for 1000 smartphone users in a week) for 
WeChat and iQIYI because a large number of users spend a substantial amount of time on both of them. However, budget competition 
explains only 2% of the overall effects. We get similar results for WeChat and Kwai. Budget competition explains less than 1.5% of 
the overall effects. In summary, for the top apps in China in 2017, budget competition is substantial in magnitude but minor when 
compared to functional competition. The analysis of more recent data from 2024 suggests that despite the significant growth in the 
mobile app market since 2017, the relative role of budget competition remains small. Budget competition will play a larger role if 
functional interactions between apps are minimal, which is more likely if the time budget under consideration is small.

This paper contributes to the emerging literature on mobile applications. Due to data limitations, researchers have mostly focused 
on the supply side of apps (Bresnahan, Orsini, Yin and Pai-Ling, 2014a; Bresnahan, Davis, Yin and Pai-Ling, 2014b; Ershov, 2018; Jin, 
Liu, and Wagman, 2024; Leyden, 2022; Li and Agarwal, 2017; Liu, Nekipelov, and Park, 2014; Liu, 2017; Wen and Zhu, 2017; Yin, 
Davis, and Muzyrya, 2014). The demand side for apps is either absent or described with aggregate ranking or downloads data from 
app stores (Carare, 2012; Deng, Lambrecht and Liu, 2022; Ghose, Han and Pil, 2014; Cecere, Le Gue and Lefrere, 2020; Li, Bresnahan, 
and Yin, 2016; Li and Tsai, 2022; Yi, Lee, and Kim, 2019).7 An immediate predecessor of this paper is Han et al. (2016). They employ 
a multi-nominal discrete-continuous extreme value (MDCEV) model developed by Bhat (2005). However, in their paper, joint usage 
is explained purely by correlated preferences. In contrast, this study explicitly disentangles substitutability/complementarity from 
correlated preferences using overlapping user data and instrumental variables.

A concurrent paper by Kawaguchi et al. (2022) simulates mergers of apps. They estimate demand and supply for apps in two 
categories with usage and advertising data from Japan. Their paper imposes more restrictive conditions on demand. Aridor (2025) 
addresses the market definition problem in the mobile Internet industry through experimental methods. Aridor (2025) finds significant 
cross-category substitution, which is consistent with the theoretical prediction and empirical findings in my paper. Allcott et al. (2020) 
and Allcott et al. (2022) study the welfare implications and addiction of social media apps using experimental results.

Methodologically, this paper extends the framework proposed by Berry et al. (1995). This model represents the first attempt to 
integrate four key components into a consumer demand framework: discrete-continuous decisions, interactions between products, 
budget constraints, and estimation with instruments. This paper contributes to the literature on the demand for differentiated goods 
in economics and marketing, particularly focusing on cases where complementarity is of interest (Ershov, Laliberté, Jean-William and 
Orr, 2018; Gentzkow, 2007; Kim, Allenby, and Rossi, 2002; Lewbel and Nesheim, 2019; Mehta, 2007; Nair, Dubé, and Chintagunta, 
2005; Song and Chintagunta, 2006, 2007; Thomassen, Smith, Seiler, and Schiraldi, 2017; Vélez-Velásquez, 2019; Wang, 2024). Unlike 
Gentzkow (2007), this paper accounts for both the extensive margin (selection of products) and the intensive margin (quantities 
of selected products) in consumer decisions. This distinction is crucial for estimating complementarity. Consumers purchase two 
boxes of cereal with different flavors due to their preference for variety (which exhibits decreasing marginal utility) rather than 
complementarity. A discrete choice model employing bundles of various products cannot distinguish between complementarity and 
taste for variety. Taste for variety is captured through satiation parameters and can be estimated with usage data in this study. 
Additionally, this paper contributes to the investigation of time allocation within transportation research (Bhat, 2005, 2018; Kitamura, 
1984; Pawlak, Polak, and Sivakumar, 2015, 2017) by directly estimating relationships between activities. Moreover, this model offers 
a flexible second-order approximation to consumer decisions, allowing for adaptation to explore other research topics.

This paper contributes to the ongoing policy discourse on regulating the digital economy (European Commission. Directorate 
General for Competition, 2019; Furman et al., 2019; Scott-Morton et al., 2019). A key challenge in analyzing the digital economy is that 
the digital economy is characterized by free services, whereas conventional economic tools necessitate pricing data.8 Complements 
and substitutes are defined with compensated cross-price elasticities and market power is defined with prices as well. This study 
employs time variations rather than price variations to model the demand for apps. The concept of budget competition resonates with 
the “curse of bigness” central to the New Brandeis movement (Khan, 2018; Wu and Cashman, 2018). Budget competition suggests 
that the concentration of user time and attention harms consumers, transcending traditional functional boundaries. However, the 
empirical results of this study indicate that the magnitude of the budget competition effect is likely modest within the mobile Internet 
industry.

The empirical results have direct policy implications. First, they demonstrate that categories can be a poor proxy for competitive 
relationships, suggesting that a more nuanced approach is needed for market definition. Second, the decomposition of competition I 
propose introduces a novel "theory of harm" for consumers. The framework reveals that the merger of complementary/independent 

7 Both Wu et al. (2022) and Lee (2018) use a panel of individual usage of smartphone. However, both observe usage of categories rather than 
apps. Lee (2018) estimates the demand for smartphone. Wu et al. (2022) uses a hidden Markov model to analyze what motivates mobile app usage.
8 In his opinion piece in the Washington Post, Wu (2018) argues:

“Our standards for assessing mergers, fixated on consumer prices, were a poor match for the tech economy and are effectively 
obsolete.”

In the report commissioned by the Stigler Committee on Digital Platforms, Scott-Morton et al. (2019) proposes
“The law needs better analytical tools to take into account the impact of potential and nascent competitors and competition. 

Market definition will vary according to what consumers are substituting between[……].”
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apps, which might seem benign, could harm users if budget competition dominates functional competition. Ultimately, this paper 
offers a rigorous structural model to empirically evaluate the significance of budget competition, providing a new tool for policymakers 
and regulators to better understand and address the unique competitive dynamics of the digital economy.

2.  A theory of budget competition

This section formally defines and distinguishes budget competition from functional competition. I then provide an analytical 
characterization of budget competition and functional competition within a quadratic utility framework. This characterization reveals 
that budget competition can dominate functional competition and a pair of complementary apps can be gross substitutes.

2.1.  Definition

To quantitatively define budget competition, we focus on the exit of an app.9 There are two reasons the exit of an app could affect 
other apps. First, because of substitutability (complementarity), users find the remaining apps more (less) appealing. Hence users will 
spend more (less) time on the remaining apps. This is the functional competition effect. Second, the exit of an app means time that 
used to be spent on that app is now “free”, and users can allocate it to the remaining apps. This is the budget competition effect.

Consider the original time allocation bundle, 𝐭𝑜 = argmax𝑈 (𝐭), and the new bundle, 𝐭𝑛 = argmax𝑈 (𝐭|𝑡𝑗 = 0), subject to the same 
time constraint ∑𝐽

𝑘=0 𝑡𝑘 = 𝑇 . 𝐭𝑛 − 𝐭𝑜 summarizes the effects of the exit of app 𝑗. To formally separate budget competition and functional 
competition, I introduce an intermediate step. In the intermediate step, the user chooses an intermediate bundle, 𝐭𝑖, such that the 
marginal utilities of 𝐭𝑖 are equal to the marginal utilities of 𝐭𝑜 except for app 𝑗. That is, 𝐭𝑖−𝑗 is the solution to the following system of 
equations:

𝜕𝑈 (𝐭𝑖−𝑗 |𝑡
𝑖
𝑗 = 0)

𝜕𝑡𝑖𝑘
=

𝜕𝑈 (𝐭𝑜)
𝜕𝑡𝑜𝑘

∀𝑘 ≠ 𝑗&𝑡𝑖𝑘 ≥ 0 (1)

Note that the time constraint is irrelevant in this step. 𝐭𝑖 − 𝐭𝑜 is the functional competition effect because the difference is entirely due 
to complementarity or substitutability among apps. 𝐭𝑛 − 𝐭𝑖 is therefore the budget competition effect. We can extend the definition to 
an entry as well.

Price changes and a wealth budget can also be incorporated. Consider pay-per-use by adding 𝑔(𝑊 − 𝐩 ⋅ 𝐭) into 𝑈 (𝑡) where 𝐩 is the 
vector of hourly prices of apps, 𝑊  is the total wealth, and 𝑔(⋅) is the utility of wealth. When 𝑝𝑗 changes from 𝑝𝑜𝑗 to 𝑝𝑛𝑗 , the intermediate 
bundle is given by

𝜕𝑈 (𝐭𝑖|𝐩𝑜−𝑗 , 𝑝𝑗 = 𝑝𝑛)

𝜕𝑡𝑖𝑘
=

𝜕𝑈 (𝐭𝑜|𝐩𝑜)
𝜕𝑡𝑜𝑘

where 𝐭𝑜 = argmax𝑈 (𝐭,𝐩), subject to both the time constraint and the monetary constraint. Budget competition extends to even 
more complicated constraints. The intermediate bundle 𝐭𝑖 in (1) is not the outcome of an optimization and can always be calculated 
regardless of the number of constraints. For most products, monetary constraint is the only relevant constraint. Housing and food 
expenditure would crowd out discretionary expenses. Purchasing a new car would likely reduce vacation expenditures. Nevertheless, 
previous literature has not formally explored budget competition. The reason is that the budget shares of traditional products like 
cereals and yogurt are generally small. Consumers would not become poorer because they buy an expensive cup of yogurt. In contrast, 
time shares of leading apps can be large. A user may spend two hours on Instagram and two hours on TikTok within a single day. 
Users would find other apps to “kill time” if TikTok is blocked.

2.2.  Relationship with Slutsky/Hicksian decomposition

The concepts of budget competition and functional competition relate to the substitution effect and the wealth effect in the classical 
demand theory. With Slutsky/Hicksian decomposition, we isolate the wealth effect of a price change through wealth compensation, 
ensuring that the original bundle is just affordable or the original level of utility is just attainable (Mas-Colell et al., 1995). In this 
paper, I isolate the budget competition effect of a price change by restoring the marginal utilities to the original level. In Table 1, 
I compare the two ways of decomposition and the two sets of definitions of complements and substitutes considering the effects of 
an increase in 𝑝𝑗′  on product 𝑗. Whereas the wealth effect can be negative (for normal goods) or positive (for inferior goods), the 
budget competition effect is always positive. A notable implication from Slutsky/Hicksian decomposition is that when the wealth 
effect dominates the substitution effect, the Walrasian demand for an inferior good increases after an increase in its own price. A 
similar surprise arises from my decomposition: when budget competition dominates functional competition, complementary goods 
are gross substitutes. This idea will be formally elucidated when we set up the utility model.

9 The analysis applies to entry and price changes as well.

International Journal of Industrial Organization 105 (2026) 103247 

4 



H. Yuan

Table 1 
The Effects of an Increase in 𝑝𝑗′  on Product 𝑗.

 Product Relationship  Definition  Decomposition
 Substitution Effect  Wealth Effect

 Substitutes 𝜕ℎ𝑗 (𝐩,𝑢)
𝜕𝑝𝑗′

> 0  +
− (normal); + (inferior)

 Complements 𝜕ℎ𝑗 (𝐩,𝑢)
𝜕𝑝𝑗′

< 0  –
 Functional Competition  Budget Competition

 Substitutes 𝜕2𝑈 (𝐱)
𝜕𝑥𝑗 𝜕𝑥𝑗′

< 0  +  +
 Complements 𝜕2𝑈 (𝐱)

𝜕𝑥𝑗 𝜕𝑥𝑗′
> 0  –  +

Note:
1. ℎ𝑗 (𝐩, 𝑢) is the Hicksian demand of product 𝑗 given prices 𝐩 and a utility level 𝑢. 𝑈 (𝐱)
is the utility of consuming 𝐱.
2. The upper panel presents Slutsky decomposition and the lower panel my decompo-
sition.

2.3.  A utility framework

To study budget competition between a pair of apps, we consider a smartphone user who allocates her time to four options 
𝑗 = 0, 1, 2, 3. 𝑗 = 1, 2 are the two apps of interest. 𝑗 = 0 is the option of not using a smartphone and 𝑗 = 3 is a generic app capturing 
the use of any other apps. Her time allocation can be described by 𝐭 = [𝑡0, 𝑡1, 𝑡2, 𝑡3]′ where 𝑡𝑗 is the amount of time allocated to option 
𝑗 = 0, 1, 2, 3. The utility maximization problem of consumer 𝑖 is

max
𝐭

𝝁′𝐭 + 0.5𝐭′𝜞 𝐭 (2)

𝑠.𝑡.𝟏 ⋅ 𝐭 ≤ 𝑇 (3)

where 𝝁 = [𝜇0, 𝜇1, 𝜇2, 𝜇3]′ and

𝚪 =

⎡

⎢

⎢

⎢

⎢

⎣

𝛾0 0 0 0
0 𝛾1 𝛾12 0
0 𝛾12 𝛾2 0
0 0 0 𝛾3

⎤

⎥

⎥

⎥

⎥

⎦

.

The quadratic utility function in (2) can be seen as a second order approximation of any reasonable utility function. Intuitively, the 
first order parameter 𝜇𝑗 (taste parameter) determines if 𝑗 is used. I assume 𝜇0 = 1 to normalize the utility. The second order parameter 
𝛾𝑗 (satiation parameter) determines how much time is spent on app 𝑗. The interaction parameter 𝛾12 is negative if the two apps are 
substitutes and positive if they are complements. 𝛾12 determines if the two apps are likely to be used together. We assume other 
interaction parameters in 𝚪 like 𝛾01 or 𝛾23 to be 0 because a user of app 1 or app 2 should always have a positive 𝑡0 and 𝑡3.

The conventional definition of complements and substitutes10 hinges on the cross-derivatives of compensated demand func-
tions, aligning closely with the substitution effect in the classical demand theory (Mas-Colell, Whinston, and Green, 1995). For a pair 
of apps with 𝛾12 = 0, their compensated cross derivatives would be positive, making them substitutes by the conventional definition. 
In other words, any two unrelated products are substitutes because they can substitute each other in providing utility. This may be 
at odds with how firms think about competition and substitution. Firms usually think about competition in terms of functions and 
features. In contrast, my approach defines complements and substitutes based on the cross-derivatives of utility functions, and 
hence does not rely on utility maximization or expenditure minimization. This distinction is compatible with our definition of budget 
competition in Section 2.1.

2.4.  Analytical characterization

Within the quadratic utility framework, we consider the budget competition effect of the exit of app 2 on app 1. Eq. (1) can now 
be simplified when app 2 exits the market11:

𝜇1 + 𝛾1𝑡
𝑜
1 + 𝛾12𝑡

𝑜
2 = 𝜇1 + 𝛾1𝑡

𝑖
1.

In Table 2, I provide analytical solutions for functional competition and budget competition depending on whether 𝑡𝑜1 and 𝑡𝑖1 are 
strictly positive. Note that for app 2 to have any competitive effect, be it budget competition or functional competition, 𝑡𝑜2 must be 
strictly positive, which is implicitly assumed in Table 2.

10 Samuelson (1974) discusses various definitions of complements and substitutes. Berry et al. (2017) discuss seven categories of complements.
11 The marginal utilities of app 3 and the offline option would not change with the exit of app 2 because I assume 𝛾20 = 𝛾23 = 0.

International Journal of Industrial Organization 105 (2026) 103247 

5 



H. Yuan

Table 2 
Analytical Decomposition.

𝑡𝑜1 𝑡𝑖1  Functional Competition (𝑡𝑖1 − 𝑡𝑜1)  Budget Competition (𝑡𝑛1 − 𝑡𝑖1)

𝑡𝑜1 > 0 𝑡𝑖1 > 0 𝛾12
𝛾1
𝑡𝑜2 (1 − 𝛾12

𝛾1
)𝑡𝑜2

1
𝛾1 (

1
𝛾0

+ 1
𝛾1

+ 1
𝛾3

)

𝑡𝑜1 > 0 𝑡𝑖1 = 0 −𝑡01 max{0,
𝑇− 𝜇1−𝜇0

𝛾0
− 𝜇1−𝜇3

𝛾3

𝛾1 (
1
𝛾0

+ 1
𝛾1

+ 1
𝛾3

)
}

𝑡𝑜1 = 0 𝑡𝑖1 > 0 𝜇2−𝜇1

𝛾1
+ 𝛾2

𝛾1
𝑡𝑜2 [(1 − 𝛾2

𝛾1
)𝑡𝑜2 −

𝜇2−𝜇1

𝛾1
] 1
𝛾1 (

1
𝛾0

+ 1
𝛾1

+ 1
𝛾3

)

𝑡𝑜1 = 0 𝑡𝑖1 = 0 0 max{0,
𝑇− 𝜇1−𝜇0

𝛾0
− 𝜇1−𝜇3

𝛾3

𝛾1 (
1
𝛾0

+ 1
𝛾1

+ 1
𝛾3

)
}

Note: This table presents analytical characterizations of functional competition 
and budget competition. The calculations are in Appendix D.

The results in Table 2 are intuitive. Let us focus on the first row and assume 𝛾12 ≤ 0, 𝑡𝑜1 > 0 and 𝑡𝑖1 > 0. In the intermediate step, 𝛾12𝛾1 𝑡
𝑜
2

is diverted to app 1 due to functional competition. That leaves the user with (1 − 𝛾12
𝛾1

)𝑡𝑜2 of free time, which is allocated to the remaining 
options proportional to the inverse of their satiation parameters. The intuition is similar for complements. When 𝛾12 > 0, 𝑡𝑖1 decreases by 
|

𝛾12
𝛾1

|𝑡𝑜2. Therefore, the free time is (1 + |

𝛾12
𝛾1

|)𝑡𝑜2 and larger than 𝑡𝑜2. For users with 𝑡𝑜1 > 0 and 𝑡𝑖1 > 0, the gross diversion ratio consists of 

two parts: diversion because of functional competition ( 𝛾12𝛾1 ) and diversion because of budget competition ((1 −
𝛾12
𝛾1

)
1
𝛾1

1
𝛾0

+ 1
𝛾1

+ 1
𝛾3

):

Diversion Ratio(𝐷𝑅) ≡
𝑡𝑛1 − 𝑡𝑜1
𝑡𝑜2

= 𝛾12
𝛾1

+ (1 −
𝛾12
𝛾1

)
1
𝛾1

1
𝛾0

+ 1
𝛾1

+ 1
𝛾3

(4)

When 𝛾12 = 0, we have 𝐷𝑅 =
1
𝛾1

1
𝛾0

+ 1
𝛾1

+ 1
𝛾3

> 0 despite the fact that the two apps are functionally independent. However, for budget 
competition to change the relevant market definition, budget competition has to be large enough. Note that within the quadratic 
utility framework, we have 𝑡𝑜𝑗 ∝ 1

𝛾𝑗
. Therefore, for budget competition (

1
𝛾1

1
𝛾0

+ 1
𝛾1

+ 1
𝛾3

𝑡𝑜2) to be large for a user, we need 𝑡𝑜1 and 𝑡𝑜2 to be 
large. When we consider usage of many users 𝑖, we need 𝑡𝑜𝑖1 and 𝑡𝑜𝑖2 to be positively correlated across 𝑖. For antitrust authorities, 
mergers involving apps with significant shares of user time or apps targeting the same niche market should trigger scrutiny from 
antitrust authorities, irrespective of their functional aspects. Candidates are superapps or social apps with many functions (WeChat, 
Alipay, Baidu, Facebook, Snapchat), gaming apps (PUBG, Honor of Kings), and video and streaming apps (YouTube, TikTok, Twitch, 
Netflix).

Consider the case when 𝛾12 > 0 and the two apps are complements. The diversion ratio in (4) can be positive or negative. This 
means complementary apps can become gross substitutes because of budget competition. The threshold for the diversion ratio in (4) 
to be positive is given by

𝐷𝑅 ≥ 0 ⇔ 𝛾12 ≤ − 1
1
𝛾0

+ 1
𝛾3

.

In other words, 𝛾12 has to be sufficiently small for a pair of complements to be gross substitutes. When 𝛾12 < 0, the two apps are 
substitutes. Budget competition leads to a diversion ratio larger than the one predicted by functional relationship.

2.5.  Budget competition in the FTC v. Meta case

In the FTC v. Meta case, John List calculated gross diversion ratios from Facebook and Instagram to other apps based on an 
experiment. However, the court has doubts about those gross diversion ratios:

“Those numbers might not represent substitution if they merely reflected where users were spending time anyway. 
Suppose that someone was already spending 10% of his day on YouTube. If, when he was paid to spend less time on 
Instagram, he devoted 10% of his newfound free time to YouTube, then he would not be using that app to substitute 
for Instagram but simply spending additional time as he normally would have.”12

Implicitly, the court draws a distinction between budget competition and functional competition, suggesting that the former does 
not constitute genuine competitive constraint. To address this concern, List calculated an indexed ratio of “(1) the share of erstwhile 
Instagram time that a user allocated to an app to (2) the share of pre-treatment time that this user was spending on the app”.13 The 
competitive patterns implied by these indexed ratios were described as “even more striking” than the gross ratios by the court.

12 Mem. Op. at 46, Fed. Trade Comm’n v. Meta Platforms, Inc., No. 1:20-cv-03590-JEB (D.D.C. Nov. 18, 2025), ECF No. 693.
13 Ibid.
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From the perspective of my model (see (4)), what List did is to use 𝑡𝑜1
𝑇−𝑡𝑜1

 to approximate 
1
𝛾1

1
𝛾0

+ 1
𝛾1

+ 1
𝛾3

 and his indexed ratio is 

𝐷𝑅
𝑡𝑜1

𝑇−𝑡𝑜1

≈
𝛾12
𝛾1
𝑡𝑜1

𝑇−𝑡𝑜1

+ (1 − 𝛾12
𝛾1

), which is an increasing function of 𝛾12
𝛾1
.14 Drawing on the theoretical characterization in Section 2.4, we 

derive two implications. First, budget competition is competition. The assertion that diversion driven by budget constraints “might 
not represent substitution” is unfounded. To define a relevant market , we do not need to distinguish between budget competition 
and functional competition if we have credible gross diversion ratios.15 Second, budget competition is not large enough to change 
the market definition of major apps like Facebook and Instagram in the United States in 2025. This is consistent with the results I 
find for Chinese apps in 2017.

3.  Data and estimation

In this section, I first introduce the data used for estimation. I then add more details to our model so that the model in Section 2.3 
is estimable. Lastly, I discuss how we can separately identify complementarity and correlated preferences.

3.1.  Data

I utilize a proprietary weekly panel dataset from iResearch, a prominent Chinese consulting firm specializing in the mobile internet 
industry. The data span the first quarter of 2017 and consists of three parts: app usage, total smartphone usage, and overlapping user 
data.

The app usage data covers the top 300 Android apps in China across 290 demographic groups for 13 weeks. A demographic group 
is defined by gender, age (below 24, 25–30, 31–35, 36–40, and above 40), and province (29 provinces). To ensure reliability, the 
sample is restricted to apps with at least 50,000 estimated active users, resulting in an average of 82 apps per week-market pair. For 
each app, we observe the number of weekly active users (per 10,000 devices) and the average time spent on the app per device. I 
also have similar usage metrics for all Android smartphones, which allows us to calculate each app’s market share in terms of active 
users within its respective demographic group.

Most importantly, I have overlapping user data. For each pair of apps, I observe the number of Android users who used both apps 
at least once during the week. Intuitively, this variable is crucial for the identification of complementarity.

3.2.  Additional assumptions

To estimate the model in Section 2.3, I add simplifying assumptions. To normalize the level of the utility function, I assume 
𝜇0 = 1. I assume 𝜇3 = 2 so that all users spend a positive amount of time on the generic app.16 𝜇3 can be any number greater than 
𝜇0. Because time spent on 𝑗 = 0 is a residual term (𝑡0 = 𝑇 − 𝑡1 − 𝑡2 − 𝑡3) in the model, I set 𝛾0 to a small negative constant, -0.001 
( 12 × 0.001 = 0.0005). With these assumptions, the utility maximization problem of consumer 𝑖 in market 𝑚 = 1, 2,… ,𝑀 is

max
𝑡𝑖0𝑚 ,𝑡𝑖1𝑚 ,𝑡𝑖2𝑚 ,𝑡𝑖3𝑚≥0

𝑡𝑖0𝑚 − 0.0005𝑡2𝑖0𝑚 +
2
∑

𝑗=1
𝜇𝑖𝑗𝑚𝑡𝑖𝑗𝑚 + 2𝑡𝑖3𝑚 + 1

2

3
∑

𝑗=1
𝛾𝑖𝑗𝑚𝑡

2
𝑖𝑗𝑚 + 𝛾12𝑡𝑖1𝑚𝑡𝑖2𝑚 (5)

𝑠.𝑡. 𝑡𝑖0𝑚 + 𝑡𝑖1𝑚 + 𝑡𝑖2𝑚 + 𝑡𝑖3𝑚 = 168

𝑇  becomes 168 in (5). The number 168 is the total number of hours in a week and the time scope of this utility function. This 
choice is imposed by the data structure; I happen to observe weekly usage. One can certainly consider utility functions defined over 
various time periods like a month, a day, an hour, or even a second if the data allows. Estimated demand models will be different but 
valid within their respective time scopes. For example, when modeling usage for every second, all apps are gross substitutes because 
of budget competition. Depending on the question of interest, we might opt for different time scopes. For instance, if we want to 
study the effects of marketing campaigns, we want to set 𝑇  to be a day or a week rather than a year. If possible, we should choose 
𝑇  spanned by the observed usage of all options of interest. If users never use smartphones between 11 pm and 7 am and we are 
interested in app usage, then we should consider 𝑇 = 16 for daily data or 𝑇 = 16 × 7 = 112 for weekly data.

3.3.  Consumer heterogeneity

Consumers have different preferences for apps. Consider the case where we can only observe aggregate outcomes for a set of 
markets (denoted with 𝑚). 𝜇𝑖𝑗𝑚 and 𝛾𝑖𝑗𝑚 are parameterized as

𝜇𝑖1𝑚 =𝐱𝑚𝜷
𝜇
1 + 𝜉𝜇1𝑚 + 𝜀𝑖1𝑚 = 𝛿𝜇1𝑚 + 𝜀𝑖1𝑚 (6)

14 When 𝛾12 = 0, 𝑡𝑜1
𝑇−𝑡𝑜1

=
1
𝛾1

1
𝛾0

+ 1
𝛾1

+ 1
𝛾3

. In an earlier version of this paper, I derive an index of budget competition when 𝛾12 = 0.
15 In the Qihu v. Tencent case, we do not have such gross diversion ratios.
16 All users in my dataset spend a positive amount of time on Android smartphones. Otherwise they are not observed.
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𝜇𝑖2𝑚 =𝐱𝑚𝜷
𝜇
2 + 𝜉𝜇2𝑚 + 𝜀𝑖2𝑚 = 𝛿𝜇2𝑚 + 𝜀𝑖2𝑚 (7)

𝛾𝑖1𝑚 =𝐱𝑚𝜷
𝛾
1 + 𝜉𝛾1𝑚 = 𝛿𝛾1𝑚 (8)

𝛾𝑖2𝑚 =𝐱𝑚𝜷
𝛾
2 + 𝜉𝛾2𝑚 = 𝛿𝛾2𝑚 (9)

𝛾𝑖3𝑚 =𝐱𝑚𝜷
𝛾
3 + 𝜉𝛾3𝑚 = 𝛿𝛾3𝑚 (10)

where 𝐱𝑚 is a set of exogenous market level variables including fixed effects.17 I follow Berry et al. (1995) and Nevo (2000) in 
denoting market-level parameters with 𝜹 = (𝛿𝜇1𝑚, 𝛿

𝜇
2𝑚, 𝛿

𝛾
1𝑚, 𝛿

𝛾
2𝑚, 𝛿

𝛾
3𝑚). 𝜉𝜇 and 𝜉𝛾 capture app-market specific idiosyncratic error terms. 

For example, a weather shock to market 𝑚 may increase the marginal utility of Uber but not that of Google Docs. 𝜀𝑖1𝑚 and 𝜀𝑖2𝑚 are 
individual error terms that are iid across individuals but can be correlated across apps. 𝜀𝑖1𝑚 and 𝜀𝑖2𝑚 capture unobserved individual 
characteristics that influence utilities derived from apps. For example, users with cars, compared to those without cars, derive higher 
utilities from Google Maps and lower utilities from Uber. Therefore, the preference for Uber and the preference for Google Maps can 
be negatively correlated. As discussed in Train (2009), the variance of 𝜇𝑖𝑗𝑚 cannot be separately identified from the mean of 𝜇𝑖𝑗𝑚. 
Hence, the variance of 𝜀𝑖𝑗𝑚 is assumed to be 1 for all 𝑗. I assume (𝜀𝑖1𝑚, 𝜀𝑖2𝑚) follows a normal distribution 𝑁(𝟎,𝚺)18, where 

𝚺 =
[

1 𝜌
1

]

.

𝜌𝑗𝑗′  captures correlated preferences between app 𝑗 and app 𝑗′. We can certainly add individual error terms in 𝛾𝑖𝑗𝑚 as well and allow 
them to be correlated. Correlated preferences and individual error terms are introduced to account for overlapping users, which 
occur at the extensive margin (i.e., the decision to use another app conditional on already using one). Consequently, overlapping 
users are best explained through error terms in the taste parameters rather than the satiation parameters. It is difficult to come up 
with additional variations to identify correlation between 𝛾𝑖𝑗𝑚 and 𝛾𝑖𝑗′𝑚.

𝛾12 and 𝜌 together explain the overlapping users of app 1 and app 2. An econometric challenge is to disentangle 𝛾12 from 𝜌, which 
will be discussed in the next section.

3.4.  Identification

Intuitively, both 𝛾12 and 𝜌 can explain the observed share of overlapping users, 𝑠∗12. If one observes that many users use both 
NYTimes and WSJ, it could be the case that NYTimes and WSJ are complements as they offer different perspectives on the same 
events, or that users have strong demand for news in general. In the first case, 𝛾12 > 0. In the second case, 𝜌 > 0. In economic textbooks, 
complements and substitutes are defined with compensated cross-price elasticities of demand: if an exogenous increase in the price of 
product 𝐴 leads to a decrease in the compensated demand of product 𝐵, then they are complements; otherwise, they are substitutes. 
When there is no price, one can extend the definition: if users spend more time on an app due to an exogenous increase in its utility, 
the (marginal) utility of its complements (substitutes) would increase (decrease). This definition, based on cross-derivatives of the 
utility functions, forms the foundation of my identification strategy, which utilizes app updates as instrumental variables. Updates of 
app 1 should change the utility of app 1 but not that of app 2. However, updates of app 1 can change the usage of app 2 through 𝛾12. 
Therefore, I use the following moments to identify nonlinear parameters 𝛾12 and 𝜌

𝐸(𝑠∗12𝑚 − 𝑠12𝑚) = 0 (11)

𝐸(𝑢𝑝𝑑𝑎𝑡𝑒1𝑚 ⋅ 𝜉𝜇2𝑚) = 0 (12)

𝐸(𝑢𝑝𝑑𝑎𝑡𝑒2𝑚 ⋅ 𝜉𝜇1𝑚) = 0 (13)

There are two unique parameters to be estimated, 𝛾12 and 𝜌. Correspondingly, we have three moments in Eqs. (11)–(13). This model 
is overidentified. The moment in (11) matches the observed overlapping user and the predicted overlapping user given 𝛾12 and 𝜌. 
The moments in Eqs. (12) and (13) are based on the assumption that the update history of app 𝑗 (app 𝑗′) should not enter the utility 
of app 𝑗′ (app 𝑗) directly. As Android update data is unreliable,19 I utilize the update history of the corresponding iOS app, which 
cannot affect the utility of any other Android app. Specifically, update history is described by three variables: the cumulative numbers 
of small updates, medium updates, and major updates.20 Using cumulative values allows my IVs to capture update effects even if 
adoption is not immediate. A limitation of update history is that it varies over time but remains constant across geographic markets. 
In Section 3, I have a weekly panel of demographic groups and update history will be collinear with week fixed effects in 𝐱′𝑚. To 
address this problem, I construct market-specific update history variables, enabling each market to respond to updates differently. In 
Section A, I provide reduced form evidence that the overlapping user data and the update history contain new information about the 
relationship between apps beyond the correlation of active users.

17 In an earlier version of this paper, I add network effects in 𝐱𝑚 and estimate the network coefficients with extra instruments. The results are 
similar to the results presented here.
18 Any distribution would be compatible with my model. I choose the normal distribution because it is the “natural” choice in the sense of the 
central limit theorem.
19 One reason is that developers can release Android apps outside mainstream app stores.
20 “Small”, “medium”, and “major” are defined by the digits of version numbers.
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Table 3 
Identifying Variations.

 Parameters  Variables  Data
𝜷𝜇
1 𝑠1𝑚𝑤 = 1

𝑁𝑚𝑤

∑

𝑖 𝕀(𝑡𝑖1𝑚𝑤 > 0)  Active users of app 1
𝜷𝜇
2 𝑠2𝑚𝑤 = 1

𝑁𝑚𝑤

∑

𝑖 𝕀(𝑡𝑖2𝑚𝑤 > 0)  Active users of app 2
𝜷𝛾
1 𝑡1𝑚𝑤 = 1

𝑁𝑚𝑤

∑

𝑖 𝑡𝑖1𝑚𝑤  Average time spent on app 1
𝜷𝛾
2 𝑡2𝑚𝑤 = 1

𝑁𝑚𝑤

∑

𝑖 𝑡𝑖2𝑚𝑤  Average time spent on app 2
𝜷𝛾
3 𝑡3𝑚𝑤 = 1

𝑁𝑚𝑤

∑

𝑖 𝑡𝑖3𝑚𝑤  Average time spent on smartphone
𝛾12 , 𝜌 𝑠12𝑤 = 1

𝑁𝑤

∑

𝑖 𝕀(𝑡𝑖1𝑚𝑤𝑡𝑖2𝑚𝑤 > 0), 𝑢𝑝𝑑𝑎𝑡𝑒1𝑤, 𝑢𝑝𝑑𝑎𝑡𝑒2𝑤  Overlapping users and updates
Note: 𝑤 denotes the index for weeks, while 𝑚 represents the index for markets. 𝑁𝑚𝑤 stands for 
the number of Android smartphone users in market 𝑚 during week 𝑤.

The identification of linear parameters 𝜷 is straightforward and relies on the following moment conditions:
𝐸(𝐱′𝑚𝜉

𝜇
1𝑚) = 0 (14)

𝐸(𝐱′𝑚𝜉
𝜇
2𝑚) = 0 (15)

𝐸(𝐱′𝑚𝜉
𝛾
1𝑚) = 0 (16)

𝐸(𝐱′𝑚𝜉
𝛾
2𝑚) = 0 (17)

𝐸(𝐱′𝑚𝜉
𝛾
3𝑚) = 0 (18)

The identifying variations for each parameter are listed in Table 3.

3.5.  Estimation methods

I use GMM to match moments predicted by the model with moments calculated from the data. The full set of parameters to be 
estimated is 𝜽 = (𝜷𝜇

1 , 𝜷
𝜇
2 , 𝜷

𝛾
1 , 𝜷

𝛾
2 , 𝜷

𝛾
3 , 𝛾12, 𝜌). As in Nevo (2000), denote the linear parameters with 𝜽1 = (𝜷𝜇

1 , 𝜷
𝜇
2 , 𝜷

𝛾
1 , 𝜷

𝛾
2 , 𝜷

𝛾
3 ) as they will 

enter the GMM function linearly and the nonlinear parameters with 𝜽2 = (𝛾12, 𝜌). Consider the data structure in Section 3. I observe 
a set of markets, which are defined to be demographic groups, for 13 weeks. Denote weeks with 𝑤. For each market-week unit, I 
observe 𝑠∗𝑗𝑚𝑤, the share of consumers who spends time on app 𝑗, and 𝑡∗𝑗𝑚𝑤, the average time spent on app 𝑗 in hours. For each week, 
I also observe the total number of overlapping users between app 1 and app 2, 𝑐∗12𝑤. The asterisks indicate that they are observed 
variables. Hence the endogenous variables to be explained are 𝐲∗𝑚𝑤 = (𝑠∗1𝑚𝑤, 𝑠

∗
2𝑚𝑤, 𝑡

∗
1𝑚𝑤, 𝑡

∗
2𝑚𝑤, 𝑡

∗
3𝑚𝑤) and 𝑐∗12𝑤. The exogenous variables 

include 𝐱𝑚𝑤, a set of week and market fixed effects. Note that 𝜹 = 𝐱𝑚𝑤𝜷 + 𝝃.
With those notations, the model can be summarized as

(𝐲∗𝑚𝑤, 𝑐
∗
12𝑤) = 𝑓 (𝜹, 𝛾12, 𝜌) = 𝑓 (𝐱𝑚𝑤𝜽1 + 𝝃, 𝛾12, 𝜌)

where 𝑓 (⋅) is the nonlinear model described in Section 2.3 and 𝝃 is the stack of all market level error terms.
Based on the above eight sets of moments from (11) to (16), the GMM estimation is to minimize

min
𝜽

𝑛 ⋅ ( 1
𝑛
(
∑

𝑚𝑤
𝐳𝑚𝑤 ⋅ 𝝃𝑚𝑤)𝐖̂( 1

𝑛
(
∑

𝑚𝑤
𝐳𝑚𝑤 ⋅ 𝝃𝑚𝑤))′) (19)

where 𝝃𝑚𝑤 = (𝝃𝜇1𝑚𝑤, 𝝃
𝜇
2𝑚𝑤, 𝝃

𝛾
1𝑚𝑤, 𝝃

𝛾
2𝑚𝑤, 𝝃

𝛾
3𝑚𝑤, 𝝃

𝜇
2𝑚𝑤, 𝝃

𝜇
1𝑚𝑤, 𝐜

∗
12′𝑤 − 𝐜12′𝑤) , 𝐳𝑚𝑤 = (𝐱𝑚𝑤, 𝐱𝑚𝑤, 𝐱𝑚𝑤, 𝐱𝑚𝑤, 𝐱𝑚𝑤, 𝑢𝑝𝑑𝑎𝑡𝑒1𝑚𝑤, 𝑢𝑝𝑑𝑎𝑡𝑒2𝑚𝑤, 𝟏), and 𝑛 =

143 is the number of markets. Note that 𝜽1 does not enter 1
𝑁𝑛𝑤

∑

𝑚𝑤(𝑠
∗
12′𝑤 − 𝑠12𝑤) given 𝜹. Therefore, we can limit the global search 

to 𝜽2 = (𝛾12, 𝜌) as 𝜽1 is a linear function of 𝜹.
This estimation follows Berry et al. (1995) with an inversion step and a global search step. I need to find the values of 𝜹 that match 

the five observed market outcomes 𝐲∗𝑚𝑤 = (𝑠∗1𝑚𝑤, 𝑠
∗
2𝑚𝑤, 𝑡

∗
1𝑚𝑤, 𝑡

∗
2𝑚𝑤, 𝑡

∗
3𝑚𝑤) given (𝛾12, 𝜌). This is to solve the following system of nonlinear 

equations, 
𝐲∗𝑚𝑤 =𝐲𝑚𝑤(𝜹, 𝛾12, 𝜌) (20)

Note that each component in 𝐲𝑚𝑤 is monotonically increasing in the corresponding component in 𝜹. I solve (20) by iterating on 𝜹
analogous to the contraction mapping used by Berry et al. (1995) and Gowrisankaran and Rysman (2012): 

𝜹𝑛𝑒𝑤 = 𝜹𝑜𝑙𝑑 + 𝝓 ⋅ {𝑙𝑛(𝐲∗𝑚𝑤) − 𝑙𝑛(𝐲𝑚𝑤(𝜹𝑜𝑙𝑑 , 𝛾12, 𝜌))} (21)

where 𝝓 are five positive tuning parameters used in the iterations.
Despite the appealing features of quadratic utility functions, there is no analytical solution to quadratic optimization problems. 

Therefore, I use numerical integration to form expectations of 𝐲𝑚𝑤. Let 𝑁𝑠 be the number of simulations used for integration. We 
have 

𝐲𝑚𝑤(𝜹, 𝛾12, 𝜌) =
1
𝑁𝑠

𝑁𝑠
∑

𝑛=1
𝐲𝑛𝑚𝑤(𝜹, 𝛾12, 𝜌) (22)
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where 𝐲𝑛𝑚𝑤 are the individual outcomes for the 𝑛th draw of (𝜀0,… , 𝜀𝐽 ). In practice, I use 1000 Halton draws in the integration.
To summarize, the estimation consists of the following steps:

1. For a pair of (𝛾12, 𝜌), invert out 𝜹(𝛾12, 𝜌) with the mapping described in (21).
2. Calculate 𝑐𝑗𝑗′𝑤(𝜹(𝛾12, 𝜌), 𝛾12, 𝜌) and the value of GMM function in (19).
3. Find (𝛾12, 𝜌) that minimizes the GMM value calculated in step 2.

Empirically, the weighting matrix 𝐖̂ is obtained through a two-step iterative process, starting with 𝑊0 = 𝐼 . The minimum GMM value 
is found using a grid search over the parameters (𝛾12, 𝜌).

4.  Estimation results

I estimate the model on four pairs of apps. The first two pairs are a pair of substitutes (Baidu Map and Amap)21 and a pair of 
complements (Baidu and Baidu Map).22 I choose the two pairs to test if the model can infer complementarity/substitutability from 
data. I analyze two additional pairs to investigate competition among major apps. WeChat and iQIYI were chosen because they were 
the top two apps in terms of user time share in 2017. WeChat is a superapp with many functions: instant messaging, social media 
(“Moments”), mobile payment (“WeChat Pay”), content distribution (“Subscriptions”), and app store (“mini programs”). WeChat 
achieved near-universal adoption and accounted for more than 25% of user time spent on smartphones in 2017. iQIYI is a leading 
video streaming platform. According to the results in Section 3.3, I expect budget competition between WeChat and iQIYI to be the 
largest among the top apps. I also study WeChat and Kwai, a pair of apps that were a priori considered independent, as Kwai is a 
short-video app with no obvious functional overlap with WeChat in 2017. This pair is particularly relevant due to Kwai’s spectacular 
growth following 2017.

To reduce computational burden, I aggregate market outcomes over provinces.23 Therefore, for each pair of apps, I have a panel 
of 11 markets24 for 13 weeks. The summary statistics are in Table 4. Note that for all 𝑡∗ and 𝑠∗, the denominators are the number 
of smartphone users in the same market. App usage exhibits significant heterogeneity across demographic groups. For example, the 
average time spent on iQIYI ranges from less than 0.1 h to over 2 h, while the share of overlapping users for WeChat and iQIYI varies 
from 0.8% to 24%. In Section B, I present the “first stage” results. While the results are weak for some apps, updates of iOS apps are 
positively correlated with active users of the corresponding Android apps.

In Table 5, I present the estimates of (𝛾12, 𝜌) for each pair of apps. The model correctly identifies Baidu Map and Amap as sub-
stitutes. A negative 𝛾12 and a large 𝜌 are characteristic of direct competitors. Instruments are necessary to credibly estimate the 
relationship between apps. In column (2) of Table 5, I also estimate 𝛾12 with the assumption 𝜌 = 0 and no instruments are used25 In 
this specification, Baidu Map and Amap are estimated to be almost independent apps. Baidu and Baidu Map are correctly estimated 
to be complements. WeChat and Kwai are estimated to be substitutes (𝛾̂12 = −0.08). In the first quarter of 2017, the two apps have 
no obvious overlapping functions. On the Google Play Store, WeChat is classified as “Communication” and Kwai “Video Play and 
Editing”. Therefore, categories are a poor proxy of competitive relationships. 𝛾̂12 in columns (4) and (5) are close to 0. However, 
because 𝛾12 enters the utility function as 𝛾12𝑡1𝑡2, its economic significance depends on 𝑡1𝑡2.

To understand the economic significance of 𝛾12, I quantify the value of substitutability/complementarity with compensating vari-
ation (CV). I calculate the compensating variations (CVs) of individual apps and pairs of apps. Specifically, the total time a user has is 
increased to compensate for the loss of an app (or the pair), ensuring that their maximized utilities remain identical before and after 
the hypothetical app (pair) shutdown. The difference between the sum of individual app CVs and the CV of the app pair captures 
the value of substitutability/complementarity. This utility specification aligns with the discrete model outlined in Gentzkow (2007), 
establishing that such discrete choice models are a specific case within the framework of this study. The results are in Table 6. As we 
will see later, the budget competition effects can be large despite a small 𝛾12. As expected, the complementarity/substitutability term 
has the same sign as 𝛾12. This term is much larger in columns (3) and (4) despite the small 𝛾̂12.

5.  Budget competition and functional competition

In this section, I use the estimated structural model to simulate and decompose the competitive effects of a hypothetical app exit. 
For each app pair, I choose a market-week unit from the data. Given the estimated (𝛾̂12, 𝜌̂) in Section 4, I solve for 𝜹(𝛾12, 𝜌) to match 
the observed 𝑠∗𝑗  and 𝑡∗𝑗 . With the model calibrated to the observed data, I then simulate the market outcome for 1,000 users after one 
of the two apps is hypothetically shut down. I calculate diversion ratios based on the simulations. I then decompose the competitive 
effects of one app on another into functional competition and budget competition according to the definition in Section 2. Table 7 
presents the decomposition of one app’s competitive effects on another for 1000 simulated users.

21 Baidu Map and Amap are the two dominant players in China’s mobile map market.
22 Baidu and Baidu Map are both developed by Baidu, Inc. The core functions of Baidu app are searching and news stream.
23 In an earlier version of this paper, I estimate the model without such aggregation. The estimated competition patterns are similar to the results 
reported here.
24 Gender and five age groups define 10 markets; and an “other” market to account for the difference between national usage and the total usage 
of the balanced market panel.
25 Without instruments, we do not have variations to estimate both 𝛾12 and 𝜌.
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Table 4 
Summary Statistics.

 Variables  Mean  StdDev  Min  Max  Unit

Baidu Map and Amap

𝑠∗𝐵𝑎𝑖𝑑𝑢𝑀𝑎𝑝  0.1463  0.032  0.0877  0.2414  –
𝑠∗𝐴𝑚𝑎𝑝  0.1277  0.0286  0.0832  0.2164  –
𝑠∗12  0.022  0.0038  0.0138  0.0285  –
𝑡∗𝐵𝑎𝑖𝑑𝑢𝑀𝑎𝑝  0.0367  0.0085  0.0195  0.0652  hour
𝑡∗𝐴𝑚𝑎𝑝  0.0746  0.0192  0.0421  0.1564  hour
𝑡∗3𝑚𝑤  16.6915  3.1601  10.5834  21.8704  hour

Baidu and Baidu Map

𝑠∗𝐵𝑎𝑖𝑑𝑢  0.2494  0.0464  0.1555  0.3321  –
𝑠∗𝐵𝑎𝑖𝑑𝑢𝑀𝑎𝑝  0.146  0.0323  0.0876  0.2414  –
𝑠∗12  0.0495  0.0031  0.0439  0.0557  –
𝑡∗𝐵𝑎𝑖𝑑𝑢  0.3086  0.0524  0.1475  0.4001  hour
𝑡∗𝐵𝑎𝑖𝑑𝑢𝑀𝑎𝑝  0.0366  0.0085  0.0195  0.0652  hour
𝑡∗3𝑚𝑤  16.4493  3.1086  10.4568  21.5881  hour

WeChat and iQIYI

𝑠∗𝑊 𝑒𝐶ℎ𝑎𝑡  0.8354  0.0527  0.7311  0.9345  –
𝑠∗𝑖𝑄𝑖𝑦𝑖  0.2609  0.1134  0.0831  0.4704  –
𝑠∗12  0.2605  0.008  0.2468  0.2749  –
𝑡∗𝑊 𝑒𝐶ℎ𝑎𝑡  4.2076  0.6946  2.5212  5.5897  hour
𝑡∗𝑖𝑄𝑖𝑦𝑖  1.0767  0.5255  0.0932  2.0335  hour
𝑡∗3𝑚𝑤  11.0409  2.3751  6.5253  14.7386  hour

WeChat and Kwai

𝑠∗𝑊 𝑒𝐶ℎ𝑎𝑡  0.8352  0.0532  0.731  0.9346  –
𝑠∗𝐾𝑤𝑎𝑖  0.1154  0.0148  0.0864  0.1451  –
𝑠∗12  0.1072  0.002  0.104  0.109  –
𝑡∗𝑊 𝑒𝐶ℎ𝑎𝑡  4.3685  0.5473  3.2078  5.5869  hour
𝑡∗𝐾𝑤𝑎𝑖  0.1896  0.017  0.1519  0.2246  hour
𝑡∗3𝑚𝑤  12.2633  2.6741  6.7176  16.3154  hour

Note:
1. 𝑠∗ is the number of active users of the corresponding app (pair) divided by the number 
of active users of Android smartphones. 𝑡∗is the total number of hours spent on the 
corresponding app divided by the number of active users of Android smartphones.
2. The statistics are based on 13 observations for 𝑠∗12 and 143 observations for other 
variables.
3. 𝑡∗𝐵𝑎𝑖𝑑𝑢𝑀𝑎𝑝 in the first panel and 𝑡∗𝐵𝑎𝑖𝑑𝑢𝑀𝑎𝑝 in the second panel are different because the 
balanced panels are different for the two pairs. The same applies to 𝑠∗𝑊 𝑒𝐶ℎ𝑎𝑡 in the third 
and fourth panels.
Data Source: iResearch.

Table 5 
Structural Estimates for the Four Pairs of Apps.

 Baidu Map and Amap  Baidu and Baidu Map  WeChat and iQIYI  WeChat and Kwai
 (1)  (2)  (3)  (4)  (5)

𝛾12 −1.15 −0.02  0.1467  0.0587 −0.08
 (0.0136)  (0.0042)  (0.0174)  (0.0064)  (0.0054)

𝜌  0.7711  0 −0.0448 −0.264  0.42
 (0.0106)  –  (0.0085)  (0.0065)  (0.0208)

 IV  Yes  No  Yes  Yes  Yes
Note:
1, Standard errors are in parentheses.
2, There are 143 market-week observations.
Data Source: The author’s calculations.

Conventional categorizations of apps often fail to accurately capture the true competitive dynamics within the digital market. 
I find significant substitution between WeChat and Kwai, two apps from different categories. Specifically, when WeChat exits the 
market, 6% of its time diverts to Kwai. Conversely, when Kwai exits, about 30% of its time is reallocated to WeChat. The diversion 
ratio is large for a pair of apps with no obvious overlapping functions. This suggests that these categories are a poor proxy for genuine 
competitive relationships. In an antitrust case involving Kwai, WeChat should be included in the relevant market. This cross-category 
substitution pattern is similar to the experimental results in Aridor (2025). In this paper, we can further explain this substitution 
pattern with budget competition and functional competition.

Columns (1) and (2) of Table 7 show that budget competition is negligible (less than 0.02 × 60 = 1.2 min for 1000 smartphone users 
in a week) for apps with limited usage. As expected, the largest budget competition effect is observed between WeChat and iQIYI. When 
WeChat exits the market, time spent on iQIYI would increase by 12 h for 1000 smartphone users because of budget competition. This 

International Journal of Industrial Organization 105 (2026) 103247 

11 



H. Yuan

Table 6 
Compensating Variations of the Four Pairs of Apps.

 Baidu Map and Amap  Baidu and Baidu Map  WeChat and iQIYI  WeChat and Kwai
 (1)  (2)  (3)  (4)

 CV of App 1  9.3945  194.2896  6688.65  3567.6392
 CV of App 2  16.8407  11.1509  1216.88  94.9661
 CV of Both  33.4262  204.2014  7431.99  3817.5046
 Complementarity (Substitutability) −7.1911  1.239  473.55 −154.8994

 Estimates (𝛾̂12 , 𝜌̂)  (−1.15, 0.7711)  (0.1467, −0.0448)  (0.0587, −0.264)  (−0.08, 0.42)
Note:
1, All numeric cells are the sum of CV in hours for all 1000 simulated smartphone users in one week.
2, The calculations are based actual data from different markets in the data. This is why CVs of WeChat are different in 
columns (3) and (4).
Data Source: The author’s calculations.

Table 7 
Functional Competition and Budget Competition.

 Baidu Map and Amap  Baidu and Baidu Map  WeChat and iQIYI  WeChat and Kwai
 (1)  (2)  (3)  (4)

 The Exit of App 1
 Budget Competition  0.0027  0.0126  12.04  3.3248
 Functional Competition  7.875 −2.4075 −664.98  220.1286
 Total Effects on App 2  7.8777 −2.3949 −652.95  223.4533
 Diversion Ratio  35.04% −0.74% −11.85%  5.98%
 The Exit of App 2
 Budget Competition  0.0091  0.0191  7.12  0.5007
 Functional Competition  8.8863 −2.2601 −358.27  58.2947
 Total Effects on App 1  8.8954 −2.2409 −351.16  58.7954
 Diversion Ratio  21.28% −10% −19.56%  29.08%
𝑠∗1 × 1000  105.6  259.4  930.1  772.5
𝑠∗2 × 1000  83.2  105.6  431.5  122.1
𝑡∗1 × 1000  22.4  322.2  5511.7  3739.1
𝑡∗2 × 1000  42.1  22.5  1795.7  202.5
 estimates (𝛾̂12 , 𝜌̂)  (−1.15, 0.7711)  (0.1467, −0.0448)  (0.0587, −0.264)  (−0.08, 0.42)

Notes:
1, This table is based on data from anonymous markets in the data set.
2, All competition effect cells are the sum of changes in usage in hours for all 1000 simulated smartphone users 
in one week.
Source: iResearch and the author’s calculations.

effect is notable, even surpassing the functional competition between two leading mapping apps, Baidu Map and Amap. However, the 
budget competition effect is less than 2% of the functional competition effect (12.04 ÷ 664.98 = 1.81%, 7.12 ÷ 358.27 = 1.99%) despite 
a modest 𝛾̂12 = 0.0587.26 Another pattern revealed in Table 7 is that budget competition increases quadratically with 𝑡1 and 𝑡2. For 
example, comparing column (2) to column (4), we have 3.3248+0.50070.0126+0.0191 = 120.8 and 3739.1322.2 × 202.5

22.5 = 11.6 × 9 = 104.4.
Budget competition may be much larger because of the significant increase of usage of apps like WeChat and Kwai. To analyze 

the evolution of competition, I obtain a snapshot of aggregate app usage in China during the final week of March 2024. I use the 
same (𝛾̂12, 𝜌̂) in Table 5 and match 𝜹(𝛾12, 𝜌) to the new data in 2024. The budget competition results are in Table 8. Among the six 
unique apps in the four pairs (Baidu Map, Amap, Baidu, WeChat, iQIYI, and Kwai), Kwai experienced the most significant increase in 
usage.27 Comparing the last columns in Tables 7 and 8, the time spent on Kwai increased by a factor of 12, and the budget competition 
exerted by Kwai on WeChat increased by more than 13 times. However, functional competition also increases by more than 12 times. 
Therefore, budget competition is still small relative to functional competition. For the pair of WeChat and iQIYI, budget competition 
“decreased” because the usage in 2017 is observed for a group of power users of WeChat and iQIYI and the usage in 2024 is the 
aggregate usage of all Android users. This finding highlights that the magnitude of budget competition can vary significantly across 
different user segments. A cautionary note is that for each pair of apps, (𝛾12, 𝜌) may have changed in 2024. In 2022, WeChat added 

26 To put ̂𝛾12 = 0.0587 into perspective, note that the market level mean of 𝛾1 from inversion is 0.2714. According to (4), the diversion ratio implied 
by functional competition is approximately ̂𝛾12

𝛾1
= −21.63%, which is close to the gross diversion ratio of -19.56% in Table 7.

27 This comparison is not precise as the usage in 2017 is observed for a demographic group and the usage in 2024 is the aggregate usage of all 
Android users.
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Table 8 
Functional Competition and Budget Competition in 2024.

 Baidu Map and Amap  Baidu and Baidu Map  WeChat and iQIYI  WeChat and Kwai
 (1)  (2)  (3)  (4)

 The Exit of App 1
 Budget Competition  0.0146  0.1418  3.8864  13.25
 Functional Competition  67.625 −26.24 −270.508  1926.45
 Total Effects on App 2  67.64 −26.098 −266.622  1939.70
 Diversion Ratio  61.66% −2.94% −4.67%  34%
 The Exit of App 2
 Budget Competition  0.0962  0.2618  2.9845  6.779
 Functional Competition  109.164 −27.67 −146.424  729.36
 Total Effects on App 1  109.26 −27.408 −143.44  736.14
 Diversion Ratio  33.34% −24.98% −23.1%  30.17%
𝑠∗1 × 1000  265  383.1  886.7  886.7
𝑠∗2 × 1000  359  265  234.7  305.3
𝑡∗1 × 1000  109.7  887.7  5706.3  5706.3
𝑡∗2 × 1000  327.7  109.7  621.6  2439.6
𝑡∗3 × 1000  30625.4  30065.4  24734.9  22916.9
 Estimates (𝛾̂12 , 𝜌̂)  (−1.15, 0.7711)  (0.1467, −0.0448)  (0.0587, −0.264)  (−0.08, 0.42)

Notes:
1, This table is based on aggregate app usage in China during the final week of March 2024.
2, All competition effect cells are the sum of changes in usage in hours for all 1000 simulated smartphone users 
in one week.
Source: iResearch and the author’s calculations.

short video functions to directly compete with Kwai and TikTok. The budget competition we get from this extrapolation exercise is 
likely an upper bound for WeChat and Kwai.

While budget competition can be substantial in absolute terms, it is often dominated by functional competition. It is highly 
improbable that budget competition would transform a pair of complementary apps into gross substitutes. However, if we strongly 
believe that 𝛾12 = 0, then budget competition becomes a crucial factor for top apps with significant time shares. Such a scenario might 
arise when observing app usage over a sufficiently short time interval, 𝑇 . Over such a brief period, meaningful interactions between 
apps are minimal, and we can confidently assume 𝛾12 = 0. Consequently, all "interactions" between apps are instead captured by 
correlated preferences (𝜌), and competition is then fully explained by budget competition.

6.  Conclusion

This paper introduces a novel framework for studying competition in the mobile internet industry by formally defining and 
quantitatively evaluating budget competition and functional competition. I develop a discrete-continuous consumer demand model 
that accounts for complementarity, substitutability, and a binding time constraint.

I estimate the model with a weekly panel of app usage in the first quarter of 2017 in China. I find significant cross-category 
substitution. Categorizations are not a reliable tool to analyze competition. Most of the diversions are explained by functional compe-
tition rather than budget competition. Budget competition would likely change the relevant market definition if we believe functional 
interactions are minimal.

The demand model presented here incorporates several key features: discrete-continuous decisions, product interactions, budget 
constraints, and estimation using instrumental variables. It can be extended to include other industry features, such as network 
effects, advertising, and two-sided markets, or adapted to analyze demand for other goods. A limitation of this study is the absence 
of dynamics. The high concentration of user time on a few apps suggests that addiction, as noted by Allcott et al. (2022), may play 
a significant role. Future research could provide important insights by evaluating budget competition within a model that accounts 
for user addiction.
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Appendix A.  Reduced form evidence of identification

Identification of complementarity (𝛾𝑗𝑗′ ) and correlated preferences (𝜌) comes from two sources: the overlapping user data and 
updates of apps as IV. In this section, I provide reduced-form evidence of their usefulness. Consider the following simple regression 
equation:

𝑙𝑛(𝑞𝑗𝑡) = 𝑎 + 𝑏𝑜𝑙𝑠𝑗𝑗′ 𝑙𝑛(𝑞𝑗′𝑡) + 𝜀1𝑗𝑡 (A.1)

where 𝑞𝑗𝑡 is the number of active users of app 𝑗 in week 𝑡 nationwide. 𝑏𝑜𝑙𝑠𝑗𝑗′  summarizes the co-movement between 𝑗 and 𝑗′ and is 
increasing in both 𝛾𝑗𝑗′  and 𝜌𝑗𝑗′ . When we have overlapping user data and updates, we can use the following two regressions:

𝑙𝑛(𝑞𝑗𝑡 − 𝑐𝑗𝑗′𝑡) = 𝑎 + 𝑏𝑐𝑗𝑗′ 𝑙𝑛(𝑞𝑗′𝑡 − 𝑐𝑗𝑗′𝑡) + 𝜀2𝑗𝑡 (A.2)

𝑙𝑛(𝑞𝑗𝑡) = 𝑎 + 𝑏𝑖𝑣𝑗𝑗′ 𝑙𝑛(𝑞𝑗′𝑡) + 𝜀3𝑗𝑡 (A.3)

where 𝑐𝑗𝑗′𝑡 is the number of overlapping user between 𝑗 and 𝑗′. In (A.3), I use the update history of the iOS version of 𝑗′ as instruments 
for 𝑞𝑗′𝑡. Specifically, I use the cumulative numbers of small, medium, and major updates of 𝑗′. Therefore, 𝑏𝑑𝑖𝑓𝑓𝑗𝑗′ = 𝑏𝑜𝑙𝑠𝑗𝑗′ − 𝑏𝑐𝑗𝑗′  is the 
information we can get from the overlapping user data and 𝑏𝑏𝑖𝑎𝑠𝑗𝑗′ = 𝑏𝑜𝑙𝑠𝑗𝑗′ − 𝑏𝑖𝑣𝑗𝑗′  is the information we can get from the instruments. I 
then regress estimates of (𝑏𝑜𝑙𝑠𝑗𝑗′ , 𝑏

𝑐
𝑗𝑗′ , 𝑏

𝑖𝑣
𝑗𝑗′ , 𝑏

𝑑𝑖𝑓𝑓
𝑗𝑗′ , 𝑏𝑏𝑖𝑎𝑠𝑗𝑗′ ) on a category dummy which equals one if 𝑗 and 𝑗′ are in the same category defined 

by iResearch and zero otherwise. The categorization is based on functions and conforms to traditional definitions of a market (map, 
browser, music, etc.). Despite the criticism of categorizations in the introduction, they are still informative. A pair of apps in the same 
category should have a negative 𝛾 and a large 𝜌. If the estimates of (𝑏𝑜𝑙𝑠𝑗𝑗′ , 𝑏

𝑐
𝑗𝑗′ , 𝑏

𝑖𝑣
𝑗𝑗′ , 𝑏

𝑑𝑖𝑓𝑓
𝑗𝑗′ , 𝑏𝑏𝑖𝑎𝑠𝑗𝑗′ ) are correlated with this category dummy 

meaningfully, then we may conclude that the overlapping user data and the IV are useful.
I have the update histories of 84 apps and I run regressions on 83 × 84 = 6972 pairs of apps. Note that I have only 13 observations 

for each pair of apps because both overlapping user and update history are observed at the national level. I simulate 1000 samples 
of (𝑏𝑜𝑙𝑠𝑗𝑗′ , 𝑏

𝑐
𝑗𝑗′ , 𝑏

𝑖𝑣
𝑗𝑗′ ) for all pairs using the mean and variances from estimated equations (Eq. (A.1)), (Eq. (A.2)), and (Eq. (A.3)). Then 

I regress 1000 such samples of (𝑏𝑜𝑙𝑠𝑗𝑗′ , 𝑏
𝑐
𝑗𝑗′ , 𝑏

𝑖𝑣
𝑗𝑗′ , 𝑏

𝑑𝑖𝑓𝑓
𝑗𝑗′ , 𝑏𝑏𝑖𝑎𝑠𝑗𝑗′ ) on the category dummy. The mean and the 95% confidence interval of the 

coefficients from the 1000 regressions are in Table A.9.
The coefficient in column (1) of Table A.9 is significant and positive. This is because preferences for apps in the same category 

are often highly correlated. Instruments should remove at least some of the bias because of correlated preferences (𝜌). This is what 
we see in column (2): a smaller and insignificant coefficient. A cautionary note is that the coefficient in column (4) is not significant. 
One might be concerned about the weak IV problem given that the confidence interval in column (2) is much larger than that in 
column (1). The results in Table A.10 are conditional on an F statistic above 10. There are 50 apps with an F statistics above 10 
and hence 50 × 84 − 50 = 4150 observations. The confidence intervals are smaller in column (2) in Table A.10 and the coefficient is 
still insignificant. Therefore the insignificance of the coefficient in column (2) in Table A.9 is not driven by weak instruments. The 
relationship between 𝑏𝑐𝑗𝑗′  and the structural parameters 𝛾𝑗𝑗′  and 𝜌𝑗𝑗′  is complicated. The co-movement of the exclusive users for apps 
in the same category is much larger than the co-movement of their total active users. One explanation is that the growth of competing 
apps mostly comes from exclusive users rather than overlapping users. In other words, users who did not use either A or B started 

Table A.9 
Reduced Form Evidence of Identification.

𝑏𝑜𝑙𝑠𝑗𝑗′ 𝑏𝑖𝑣𝑗𝑗′ 𝑏𝑐𝑗𝑗′ 𝑏𝑏𝑖𝑎𝑠𝑗𝑗′ 𝑏𝑑𝑖𝑓𝑓𝑗𝑗′

 (1)  (2)  (3)  (4)  (5)
 Same-Category  0.1636  0.0246  0.3784  0.139 −0.2148

 [0.087, 0.239]  [−0.269, 0.337]  [0.298, 0.456]  [−0.183, 0.45]  [−0.325, −0.103]
 N  6972  6972  6972  6972  6972
𝑅2  0.0004  0.0000  0.0012  0.0001  0.0005

Note: The coefficients and the 95% confidence interval are based on 1000 simulations.
Data Source: iResearch and the author’s calculations.
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Table A.10 
Identification with Strong Instruments.

𝑏𝑜𝑙𝑠𝑗𝑗′ 𝑏𝑖𝑣𝑗𝑗′ 𝑏𝑏𝑖𝑎𝑠𝑗𝑗′

 (1)  (2)  (3)
 Same-Category  0.1163  0.0375  0.0788

 [0.044, 0.186]  [−0.056, 0.129]  [−0.041, 0.197]
 N  4150  4150  4150
𝑅2  0.0004  0.0000  0.0001

Note: The coefficients and the 95% confidence interval are based on 
1000 simulations. The regressions are based on the group of apps with 
a first stage F statistic larger than 10.
Data Source: iResearch and the author’s calculations.

using A or B but not both. Overall, the reduced form results indicate that the overlapping user data and updates are useful for our 
identification.

Appendix B.  Update histories of apps and their relationship with active users

In Table B.11, I list the most recent iOS version for each app in the 13 weeks of the first quarter of 2017. We observe only one 
major update, which happened in the third week for Amap. For WeChat, there are only minor updates. For the other four apps, we 
observe a mix of minor and medium updates.

To understand how updates may affect active users, I regress weekly active users on update variables for each of the 11 markets 
and for each app. This approach, consistent with the IV strategy in the structural model, allows for market-specific responses to 
updates. For each app, I obtain 11 sets of coefficients and their standard errors. I then simulate 1000 realizations for each coefficient 
and calculate the mean and 90% confidence interval for each app based on these simulations. The results, shown in Table B.12, 
indicate that all coefficients are positive, with only two insignificant exceptions. This suggests that updates of iOS apps are positively 
correlated with active users of the corresponding Android Apps.

Table B.11 
Updates of Apps.

 Week  Baidu  Baidu Map  Amap  WeChat  iQIYI  Kwai
 1  8.2  9.6  7.8.8  6.5.3  8  4.1.3
 2  8.2.5  9.6  7.8.8  6.5.3  8  4.1.6
 3  8.2.5  9.7  8  6.5.3  8.0.1  4.2.0
 4  8.2.5  9.7.3  8  6.5.4  8.1  4.2.1
 5  8.2.5  9.7.3  8  6.5.4  8.1  4.2.1
 6  8.2.5  9.7.3  8  6.5.4  8.1  4.2.1
 7  8.2.5  9.7.3  8  6.5.5  8.1  4.2.1
 8  8.2.5  9.7.3  8  6.5.5  8.2  4.2.2
 9  8.2.5  9.7.3  8  6.5.5  8.2.1  4.2.2
 10  8.2.5  9.7.3  8  6.5.5  8.2.1  4.2.2
 11  8.2.5  9.7.3  8.0.2  6.5.5  8.2.1  4.3
 12  8.3.1  9.7.5  8.0.2  6.5.5  8.2.1  4.3.1
 13  8.3.1  9.7.5  8.0.4  6.5.6  8.2.1  4.3.1

Note: This table lists the most recent iOS version for each app in the 
corresponding week in the first quarter of 2017.
Data Source: Apple App Store.

Table B.12 
Updates and Active Users.

 Updates  Baidu  Baidu Map  Amap  WeChat  iQIYI  Kwai
 Minor −73.76  60.70  58.95  19.59  8.34  9.01

 [−240.7,42.5]  [−1.9,192.6]  [0.52,176.8]  [−121.87,166.5]  [−56.29,80]  [−16.8,40.7]
 Medium  35.28  48.98 − −  4.09 −1.46

 [−120.8,218.1]  [−32,161.1] − −  [−173.9,140.1]  [−69.5,67.8]
 Major − −  83.49 − − −

− −  [9.5,187.6] − − −

Note: The coefficients and the 90% confidence intervals are based on 1000 simulations.
Data Source: iResearch, Apple App Store, and the author’s calculations.
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Table C.13 
Covariates of Baidu Map and Amap in Taste Parameters.

 Covariates  Baidu Map  Standard Error  Amap  Standard Error
 Week (02) −0.0078  0.0083 −0.0452  0.0052
 Week (03)  0.0275  0.0074  0.0026  0.0053
 Week (04) −0.0349  0.0084 −0.0466  0.0067
 Week (05)  0.0276  0.0098 −0.0466  0.0097
 Week (06)  0.0649  0.0069 −0.0466  0.0069
 Week (07)  0.0631  0.0074  0.0053  0.0071
 Week (08)  0.0657  0.0119 −0.0016  0.0113
 Week (09)  0.0465  0.0271 −0.0138  0.0166
 Week (10) −0.0838  0.0094 −0.0138  0.0053
 Week (11)  0.0944  0.0073 −0.0138  0.0071
 Week (12)  0.107  0.0081 −0.0066  0.0062
 Week (13)  0.1295  0.0085 −0.0138  0.0059
 Female  0.265 −  0.4661 −
 Male  0.3792 −  0.543 −

 Age (<=24)  0.2557 −  0.5019 −
 Age (25~30)  0.4124 −  0.6479 −
 Age (31~35)  0.552 −  0.7084 −
 Age (36~40)  0.2724 −  0.4142 −
 Age (>=40)  0.1185 −  0.2504 −

Notes:
1, This table provides parameters of covariates in 𝜇1 and 𝜇2 corresponding 
to the column (1) of Table 5.
2, The coefficients of gender and age groups are the simple average of mar-
ket fixed effects with corresponding characteristics.
Data Source: The author’s calculations.

Appendix C.  Covariates in 𝝁𝟏 and 𝝁𝟐

The covariates in 𝜇1 and 𝜇2 are market fixed effects and week fixed effects. In Table C.13, I provide covariates from the estimated 
model of Baidu Map and Amap (Column (1) in Table 5). In the following table, I report week fixed effects and aggregate market fixed 
effects by gender and age groups. The results are reasonable: users between 31 and 35 and male users derive higher utility from map 
apps because they are more likely to own and drive a car in China.

Appendix D.  Budget competition

The intermediate bundle (𝑡𝑖0, 𝑡𝑖1, 𝑡𝑖3) defined by (1) is easy to calculate. The functional competition in Table 2 is 𝑡𝑖1 − 𝑡𝑜1. After this 
step, we can calculate how much time is left to be allocated as Δ𝑇 = 𝑇 − 𝑡𝑖0 − 𝑡𝑖1 − 𝑡𝑖3. The intermediate bundle can be seen as the result 
of utility maximization over 𝑡0, 𝑡1, and 𝑡3 subject to a time budget of 𝑡𝑖0 + 𝑡𝑖1 + 𝑡𝑖3. Note that apps 0, 1, and 3 are independent. We can 
solve for the new bundle as the same utility maximization problem subject to a time budget of 𝑡𝑖0 + 𝑡𝑖1 + 𝑡𝑖3 + Δ𝑇 . The following two 
lemmas are useful when calculating the final bundle. The budget competition effect of app 2 on app 1 is 𝑡𝑛1 − 𝑡𝑖1.

Lemma 1. For 𝐽 independent apps that are used, when there is extra time Δ𝑇 , the increase in time spent on app 𝑗 is Δ𝑡𝑗 = Δ𝑇 1
𝛾𝑗

1
∑𝐽

𝑘=1
1
𝛾𝑘

. 

Proof.  From the FOCs of the old bundle, we have

𝜇𝑗 + 𝛾𝑗 𝑡
0
𝑗 = 𝜇𝑘 + 𝛾𝑘𝑡

0
𝑘 ⇒ 𝑡0𝑘 =

𝜇𝑗 − 𝜇𝑘
𝛾𝑘

+
𝛾𝑗
𝛾𝑘

𝑡0𝑗 .

Similarly, we have 𝑡1𝑘 = 𝜇𝑗−𝜇𝑘
𝛾𝑘

+ 𝛾𝑗
𝛾𝑘
𝑡1𝑗 . Because of the time constraint, we have

𝐽
∑

𝑙=1
𝑡0𝑙 = 𝑇 ⇒

𝐽
∑

𝑘=1
(
𝜇𝑗 − 𝜇𝑘

𝛾𝑘
+

𝛾𝑗
𝛾𝑘

𝑡0𝑗 ) = 𝑇 ⇒ 𝑡0𝑗 =
𝑇 −

∑

𝑘
𝜇𝑗−𝜇𝑘
𝛾𝑘

𝛾𝑗 (
∑𝐽

𝑘=1
1
𝛾𝑘
)

The budget constraint with extra time Δ𝑇  is

𝐽
∑

𝑙=1
𝑡1𝑙 = 𝑇 + Δ𝑇 ⇒

𝐽
∑

𝑘=1
(
𝜇𝑗 − 𝜇𝑘

𝛾𝑘
+

𝛾𝑗
𝛾𝑘

𝑡1𝑗 ) = 𝑇 + Δ𝑇 ⇒ 𝑡1𝑗 =
𝑇 + Δ𝑇 −

∑ 𝜇𝑗−𝜇𝑘
𝛾𝑘

𝛾𝑗 (
∑𝐽

𝑘=1
1
𝛾𝑘
)
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Therefore we have
Δ𝑡𝑗 = 𝑡1𝑗 − 𝑡0𝑗 = Δ𝑇 1

𝛾𝑗
1

∑𝐽
𝑘=1

1
𝛾𝑘

 ∎

Lemma 2. When an app 𝑞 is used because of the extra time Δ𝑇 , 𝑡1𝑞 =
𝑇+Δ𝑇−

∑

𝑘
𝜇𝑞−𝜇𝑘

𝛾𝑘
𝛾𝑞 (

∑

𝑘
1
𝛾𝑘

)
≤ Δ𝑇

𝛾𝑞 (
∑

𝑘
1
𝛾𝑘

)

Proof.  Because 𝑞 was not used (𝑡0𝑞 = 0), we have

𝜇𝑞 ≤ 𝜇𝑘 + 𝛾𝑘𝑡
0
𝑘 ⇒

𝜇𝑞 − 𝜇𝑘
𝛾𝑘

≥ 𝑡0𝑘 ⇒ 𝑇 ≤
∑

𝑘

𝜇𝑞 − 𝜇𝑘
𝛾𝑘

The FOCs of the new bundle are
𝜇𝑞 + 𝛾𝑞𝑡

1
𝑞 = 𝜇𝑘 + 𝛾𝑘𝑡

1
𝑘 ⇒ 𝑡1𝑘 =

𝜇𝑞 − 𝜇𝑘
𝛾𝑘

+
𝛾𝑞
𝛾𝑘

𝑡1𝑞

Combined with the new time constraint, we have

𝑇 + Δ𝑇 =
∑

𝑘

𝜇𝑞 − 𝜇𝑘
𝛾𝑘

+
𝛾𝑞
𝛾𝑘

𝑡1𝑞 ⇒ 𝑡1𝑞 =
𝑇 + Δ𝑇 −

∑

𝑘≠𝑞
𝜇𝑞−𝜇𝑘
𝛾𝑘

𝛾𝑞(
∑

𝑘
1
𝛾𝑘
)

Because 𝑇 ≤
∑

𝑘
𝜇𝑗−𝜇𝑘
𝛾𝑘

, we have

𝑇 + Δ𝑇 −
∑

𝑘
𝜇𝑞−𝜇𝑘
𝛾𝑘

𝛾𝑞(
∑

𝑘
1
𝛾𝑘
)

≤ Δ𝑇
𝛾𝑞(

∑

𝑘
1
𝛾𝑘
)
.

 ∎
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